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Rela t ions  a re  obtained for calculat ing the energy loss  coeff ic ient  due to f r ic t ion  at the phase in ter face  in a 
one-d imens iona l  two-phase  flow. Calculated values of the loss  coeff ic ient  as a function of a number  of 
d imens ion less  c r i t e r i a  a r e  p resen ted  for the case  of l inear  var ia t ion  of the gas veloci ty  as a function of 

the coordinate .  

In a two-phase as compared  with a one-phase  flow there  a r e  a cons iderable  number  of additional sources  of 

kinet ic  energy losses .  These  include: a) lo s ses  due to in terphase  heat t r ans fe r  at a finite phase t empera tu re  
d i f fe rence ,  b) l o s se s  due to phase t rans i t ion  at a finite value of the concentra t ion  d i f ference ,  c) l o s se s  due to f r ic t ion  
at the phase in te r faces ,  d) lo s ses  in condensation shocks,  e) kinetic energy losses  assoc ia ted  with the work done by 
sur face  tension fo rces  in connection with the curva tu re  of the phase in te r face ,  f) energy lo s se s  assoc ia ted  with the 
c i rcu la t ion  of liquid inside a pa r t i c l e  and with the repeated changes in the shape of a liquid drople t  flattened by the flow 
during rotat ion,  etc. Below, we analyze the energy losses  in a one-d imens iona l  two-phase flow assoc ia ted  with f r ic t ion 
at the phase in terface .  Two coordinate  sys t ems  a re  introduced: a sys tem fixed in space (absolute) and the moving 

s y s t e m  of the cen t e r  of g rav i ty  of the par t ic le .  

The e l emen ta ry  work done by the gas phase in absolute motion 

dA1 = g jd"% = (N~ + N3) dT~ s. (1) 

The useful work done by the gas in acce le ra t ion  or dece le ra t ion  is equal to the change in the kinetic energy of 

the liquid (solid) par t ic le :  

N2d"r, s = Fdz  = dEs  = (1 - -x)  csdcs .  (2) 

The equations of motion of pa r t i c l e s  in gaseous media  a re  usual ly obtained f rom (2). For  a pa r t i c le  of a r b i t r a r y  

shape 

dv _ (v- -  ~v,)(~v~-- ~) (3) 
d.q~ 

The work done by the gas in re Ia t ive  motion is equal to the sum of the amounts of work done in the p roces s  of 

r e v e r s i b l e  and i r r e v e r s i b l e  energy  t r ans fe r :  

Y . ( c ~ - - c ~ ) d ~ ,  (4) ) q ( c , , - - c s ) d ' ~ s .  (5) 

The total work done by the gas in acce l e ra t ing  or dece le ra t ing  the pa r t i c l e s  

dA = dEs -b dA f = dAx - -  F2 (cv - -  Cs ) d "c s , (6) 

where  

d A f =  iF1 (Cv-- cs)dTs[. (7) 

If in (1) the e l emen ta ry  work done by the gas is calculated not for the t ime of pa r t i c l e  motion (d~-s), but for an 
a r b i t r a r y  t ime d~- not assoc ia ted  with the t ime taken by the liquid drople ts  or  gas pa r t i c l e s  to t r a v e r s e  a given 
dis tance  dz, then the re la t ion  for calcula t ing the energy losses  becomes  m o r e  genera l  than (7). It can be used for 

calcula t ing Af at any, including ze ro  (e v = 0 or  e s = 0) values of c v and c s. 

We have 
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dEv "-~2-j" 

(8) 

(9) 

T r a n s f o r m i n g  (7) with a l l owance  fo r  (8), we obta in  

d A f =  ( l - - x )  

At  (1 - x) /R1Tg = cons t  

~i mg ,!' - - -  I 

d-~)'_ a (E~), i . (lO) 
R, ~v 

(i ~ ) ~  ~-~v)~ . (1~) 

We define the available kinetic energy of the two-phase flow at z = 0 and any intermediate point (0 < z <- 1) as 

E o = x  ( ~ §  (cs)~2 ' (12) 

= x  (cJ '  + ( t _ x )  (c~)~ + E Af. (13) 
2 2 

We estimate the economy of the process of kinetic energy transfer between the gas and the liquid in terms of the loss 
coefficient 

�9 = A~ Af 

!E E0E = ~ f §  l x l -  ~ - -  (c~) - -  11 -[-(1 - - x )  [,:e. v) ~ - -  ~ J l  
(14) 

It  is  i m p o r t a n t  to d e t e r m i n e  A f / ( 1  - x) and C fo r  c e r t a i n  c a s e s  of s e l f - s i m i l a r  mo t ion  of p a r t i c l e s  in a gas  flow. 

a) If the v a p o r  and l iqu id  p h a s e s  m o v e  independen t ly  of each  o t h e r  without  i n t e r c h a n g i n g  m o m e n t u m  
( n o n e q u i l i b r i u m  l imi t ) ,  

Substituting (15) into (ii) and (14), we obtain 

and 

= .~o/E.. (15) 

Ad(1 - -  x) = 0 (16)  

= 0. (17) 

b) If ~0 = r v i  = cons t  (mot ion  of a t w o - p h a s e  m e d i u m  with  z e r o  d e g r e e  of nonequ i l i b r i um) ,  then 

- -  (1 - -  vv~)~ ( c  v -  I) (c%-~ i ) i  ( 1 8 )  

and 
r -- (i --  x) (1 - -  v~) ~ 

--  ( i  - -  x ) ( I  - -  ~,vz) 2 -~ IRl~g~v~ ix + (I - -  x) 'vv~2~,~ ] " (19) 

In c a s e  b) i r r e s p e c t i v e  of the m a g n i t u d e  and s ign  of d~v/d~ r e l a x a t i o n  p r o c e s s e s  a s s o c i a t e d  with  i n t e r p h a s e  m o m e n t u m  
t r a n s f e r  cannot  take  p l ace  in the t w o - p h a s e  flow. Th i s  is the only p a r t i c u l a r  c a s e  of mo t ion  when the s l ip  f a c t o r  v and 
the lo s s  c o e f f i c i e n t  ~ do not  depend on the c o o r d i n a t e  ~~ 

If r0 ~ Vvi, Eqs .  (18) and (19) g ive  the l i m i t i n g  v a l u e s  o l a f / ( 1  - x) and ~ as z --~o. It i s  c l e a r  f r o m  (19) that  the 
S tokes  n u m b e r  T~ and d~v/d-~ have ,  q u a l i t a t i v e l y  and quan t i t a t ive ly ,  the s a m e  e f fec t  on the l i m i t i n g  c o e f f i c i e n t  ~. The  

s 
m a x i m u m  va lue  of ~ in the c a s e  of c o n v e r g e n t - c h a n n e l  f low l i e s  in the r a n g e  7g = 1 -10 .  

If the dimensionless vapor velocity depends linearly on the ~ coordinate 
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c-~ = (q~v - -  1) z +  1, (20) 

we f ind t ha t ,  in  the  c a s e  of  a c o n v e r g e n t - c h a n n e l  and  z e r o - g r a d i e n t  v a p o r  f low, 6 v and  v a r e  r e l a t e d  by the  fo l lowing  

e x p r e s s i o n :  

(]/ '&---I ] (I-}- !'[&--I 

= f ,0 - , . , ] '  (21) 
L V - - v ~ ' l J  L V - - V v ~ J  

S u b s t i t u t i n g  (21) i n t o  (11) and  c a r r y i n g  out  the  n e c e s s a r y  t r a n s f o r m a t i o n s ,  we o b t a i n  

f 
�9 4 f / ( 1 - - x ) =  t' ( cv)2df' (22) 

6 

w h e r e  

, 2[m % - -  v , ( 1 - -  ~vx) ~ In % -  ~vl 

R~u V A  ~ -  ~'v~ 

(1--Vvg) z l n Y ~  
1/A v - -  Vw- .I 

If  ~v  - 1 -< 10 -3, t hen  A f  ~- (1 - x ) f ( ~ v  )2. 

T h e  l i m i t i n g  v a l u e  of [ a s  z ~ 0 c a n  be  c a l c u l a t e d  f r o m  the  fo l l owing  e q u a t i o n  o b t a i n e d  f r o m  (11),  (14), and  (21): 

~o = lim ~ = (1 - -  x) (1 --- %)2 
z-0 ( 1 - - x )  ( 1 - - % ) ~ 2 4 7  [ (23) 

T h e  o t h e r  l i m i t i n g  v a l u e :  ~.  = l im~ is  d e t e r m i n e d  f r o m  Eq.  (19) a b o v e ,  i f  c v is  a m o n o t o n i c a l l y  v a r y i n g  f u n c t i o n  
t z~:o  

of the  z - c o o r d i n a t e .  

If  v 0 - 1, t hen ,  o t h e r  t h i n g s  b e i n g  equa l ,  a s  z v a r i e s  f r o m  z e r o  to i n f in i ty  the  c o e f f i c i e n t  ~ v a r i e s  m o n o t o n i c a l l y  

f r o m  ~0 to ~ .  In t h i s  c a s e ,  [ e i t h e r  d e c r e a s e s  (v0 < Vvl; ~0 > [ ~ )  o r  i n c r e a s e s  (v 0 > Vvl; ~0 < ~o) o r  r e m a i n s  
u n c h a n g e d  (v0 = Vvl; ~0 = ~o) .  If  v0 > 1, t h e n  ~ a l s o  v a r i e s  f r o m  ~0 to ~oo, bu t  p a s s e s  t h r o u g h  a m a x i m u m .  T h e  
p r e s e n c e  of a m a x i m u m  c a n  e a s i l y  be  e x p l a i n e d  i f  one  r e c a l l s  t h a t  a t  t he  b e g i n n i n g  of the  p a r t i c l e ' s  p a t h  [(~vV) 2 - v 2] < 
< 0. At  s o m e  v a l u e  of z the  t e r m s  x [(~v )2 - 1] and  (1 - x) [(ffvV) 2 - v~] in Eq.  (14) b e c o m e  equa l  in m a g n i t u d e ,  bu t  
r e m a i n  o p p o s i t e  in s ign .  In t h i s  c a s e ,  the  c o e f f i c i e n t  ~ ha s  a m a x i m u m  v a l u e  e q u a l  to 1. T h e  v a l u e  of ~ v  c o r r e s p o n d i n g  

to ~ = ~ m a x  = I c a n  be  c a l c u l a t e d  by  s o l v i n g  E q s .  (21) and  

x -E (1 - -  x) %2 
(Cv)Z -- x -r (1 - - x )  v z " (24) 

E q u a t i o n  (24) was  o b t a i n e d  f r o m  the  r e l a t i o n  x [(6v )2 - 1] + (1 - x) [(6vV) 2 - ul] = 0. By way  of i l l u s t r a t i o n ,  F ig .  1 
p r e s e n t s  the  c u r v e s  of ~ a s  a f u n c t i o n  of (Cv - 1) and  x fo r  v0 = 0.6 and v0 = 2 .  T h e  c a l c u l a t i o n s  w e r e  b a s e d  on Eq.  (14). 

A t  v 0 = 0.6 and  Tg = 0.1 Vo < Vvl. C o n s e q u e n t l y ,  a s  z i n c r e a s e s ,  the  c o e f f i c i e n t  ~ d e c r e a s e s  (Fig .  1, I). 

T h e  d e p e n d e n c e  of ~ on (~Pv - 1) is  p r e s e n t e d  in Fig.  2 fo r  t h r e e  v a l u e s  of the  S t o k e s  n u m b e r  ~-g. I t  i s  c l e a r  f r o m  
the  g r a p h s  t ha t  a n  i n c r e a s e  in go v - 1 l e a d s  to a d e c r e a s e  in ~. F o r  the  c o n d i t i o n s  of Fig .  2 the  g r e a t e s t  v a l u e  of 

c o r r e s p o n d s  to a z e r o - g r a d i e n t  flow. 

F o r  a z e r o - g r a d i e n t  v a p o r  f low (gPv = 1), a s  fo l lows  f r o m  (21),  

+ in ~0 -L]  
z ~ R l ~  vo - v  v - - I  J"  

J o i n t l y  t r a n s f o r m i n g  (11),  (14) and  (25),  we o b t a i n  

(25) 
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All(1 - -  x) = 12 ( v -  v o ) -  (v "~ --vo 2) (26) 

and  

= '~(1 - -  v) + (1 --Vo)l . (27) 
%' - -  ~o • (1 - -v )  + (1 - -  ~o)1 

Equation (27) gives the limiting value to which ~ in Fig. 2 tends when (~v - I) ~ 0 and Tg = const. The forms of 

dependence of ~ on (q~v - i) are far from being exhausted by Fig. 2. In particular, if we set Tg = const in (19) and (23), 

we obtain two other forms of the dependence of ~ on (q~v - i) which, as distinct from the relations of Fig. 2, are 

extremal in character. 

041 1 

3 ~ 5 6  ~Io -~ z ~ ~ 5 6  8zo-'  z (~,-i) 

Fig. I. Coefficient ~ as a function of (c v - i) and 

x for v 0 = 0.6 (1); v o=2 (If); ~-g= 0.i; Vvl = 0.9161; 

R I = i; R 2 = 0: i) x= 0.9; 2) 0.8; 31 0.7; 4) 0.6; 

5) 0.5. 

Certain forms of the dependence of ~ on u 0 are presented in Fig. 3. Curve 6 is typical of small U v - 1 and Yg. 

For Cv - 1 = 10-4; 7g = 10-4; x = 0~176 (Fig. 3) the coefficient ~ varies from 0 to 0.57. In this case the range of 

variation of ~(v 0) is not maximal. 

f0"165 ~ 
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Fig. 2. 
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.~ (.%-,') 

Coefficient ~ as a function of (q~v - i) 

a n d  T g f O r  z = 1; x =  0.9; v o = 0.6; R 1 -- 1; 
R 2 = 0: a) T g =  102; b) 10; c) 1. 

The greatest influence of v0 on the coefficient ~ is observed in the following cases: i) in the region 0 _< u 0 ___ 1 at 

z = 0; 2) in the region v 0 > 1 at values of ~v corresponding to ~ = ~max = i. At a considerable distance from the initial 
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i n t e r v a l  of m o t i o n  of the p a r t i c l e  v 0 a l m o s t  c e a s e s  to a f fec t  the c o e f f i c i e n t  ~ (Fig.  3, c u r v e s  1 -5 ) .  In th is  c a s e  the 
c a l c u l a t i o n  is  based  on equa t ion  (19). 

0.2 

0.4 

n3 

oi 

] I 

\ i 

0 Q$ Q8 z2 /.6 20 9 o 

Fig. 3. Coefficient ~ as a function of u o forR1= I; R 2= 

= 0: 1 - 5 )  p =  v v*, ? g =  10; 1) x = 0 . 9 ;  2) 0.8; 3) 0.7; 
4) 0.6; 5) 0.5; 6) (c v - 1) = 10-4; Yg = 10-4; x = 0 . 5 - 0 . 9 .  

A typ ica l  g r aph  of the c o e f f i c i e n t  ~ as a funct ion  of ~-g is  p r e s e n t e d  in Fig .  4. The  m a x i m u m  of ~ o c c u r s  at ~g  = 
= 0.01-I. 

O/ 

01 
/,2 /0 z {"~ 

! 

/ 

/ 0  -a / 0  "z / 0  "q 

Fig .  4. Coe f f i c i en t  ~ as  a funct ion  of Tg 
and x fo r  ~0 = 0.6; (c v - 1) = 10-2; R 1 = 
= 1; R 2 = 0: 1) x =  0.9; 2) 0.8; 3) 0.7; 4) 

O.6; 5) O.5. 

A t  cons t an t  (~v  - 1) Fig .  4 g ive s  the dependence  of ~ on the S tokes  number .  T h e  e x t r e m a l  c h a r a c t e r  of the 
d e p e n d e n c e  of ~ on 7g when the o t h e r  p a r a m e t e r s  a r e  f ixed is  exp la ined  as  fo l lows.  

We r e p r e s e n t  the work  Af  as  the p roduc t  of the d i m e n s i o n l e s s  f r i c t i o n  power  Nf  and the d i m e n s i o n l e s s  t i m e  
d u r i n g  which  Nf  " ac t s~  In p a r t i c u l a r ,  fo r  ~0 = Vvi, R1 = 1 and R 2 = 0, as  fo l lows  f r o m  (18), 

,~f = (1 - -  x) (I - -  Vv~)"- (28) 
'Vni 

and 

7= (c(-1)(~v+ 1) (29) 
Tg 

If x and ~v  a r e  f ixed,  then,  as  ~g  v a r i e s  f r o m  z e r o  to inf ini ty ,  ~lf i n c r e a s e s  m o n o t o n i c a l l y  f r o m  z e r o  to inf ini ty ,  
w h e r e a s  ? d e c r e a s e s  m o n o t o n i c a l l y  f r o m  inf in i ty  to ze ro .  At  s m a l l  "~g the t i m e  u is  c o n s i d e r a b l e  in magn i tude ,  but Nf  
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is extremely small. In the region of large 7g, the friction power is quite large, but the time during which it nacts n is 
negligibly small. Consequently, at both large and.small 7g Af ~ 0. Since on the interval 0 <_ 7g < ~o the work Af is 
expressed as a product of an increasing function Nf and a decreasing function ~, the dependence of Af on ~g has a 
maximum. Qualitatively, the variation of the coefficient ~ in (14) resulting from the variation of'~g does not affect the 
dependence of ~ on "~go Consequently, ~('~g), like A(Tg), has a maximum at some value of ~g. 

As the above analysis has shown, the effect of all the dimensionless similarity criteria on [ is confined to 
certain ranges of variation. Outside these ranges the coefficient ~ is almost independent of the criteria in question. 
The result obtained is nothing other than the widely known effect of "degeneracy of similarity criteria" [I]. The above 

relations make it possible to determine the limits of the ranges of variation for a given degree of influence of the 
criteria on the quantity ~. 

It is worthwhile estimating the effect of particles present in the flow on the vapor velocity for a one-dimensional 
adiabatic two-phase flow. If the volume occupied by the liquid phase is much less than the vapor volume, and we 
disregard the effect of interphase heat and mass transfer, we can express the relative vapor velocity as follows: 

where  

- 2 

c.  = I( ao- vl + (30) 

-A = 2A/(c,~)~ = (1 - -  x) [(~-~ ~)2 _ ~] + ~-f. 

Equation (30) is  the fo rmula  known f rom the gasdynamics  of one -phase  med ia  supplemented  by a t e r m  that  takes  
into account  the fo rces  of mechan ica l  in te rac t ion  between the vapor  and the liquid. Since at the beginning of the 
ca lcu la t ion  ~s and, hence,  A a r e  unknown, ~v is ca lcu la ted  f rom (30) by suc c e s s ive  approx imat ions .  

The analysis of the energy losses associated with mechanical interaction between the vapor and the liquid shows 
that the loss coefficient ~ is a complex function of a series of dimensionless criteria: p0, Yg, x, etc. In a number of 
cases ~ reaches a considerable value and then the class of losses in question should be taken into account in two-phase 
channel calculations. The formulas obtained above make it possible to find the qualitative and quantitative relations 
between ~ and the principal similarity criteria of the interphase energy transfer process. 

N O T A T I O N  

A is the work; A I is the work done by the gas in absolute motion; Af is the absolute value of the kinetic energy 
losses in gas-liquid system generated by friction at the phase interface; _A = 2A/(cv )2 is the dimensionless work; c is 
the velocity; ~ = c/(e~)0 is the dimensionless velocity; F = F 1 + F2 is the force of interaction between particle and gas; 
F 1 and F2 are components of the force F associated with the dissipation of kinetic energy (F I) and reversible interphase 
energy transfer in the gas-liquid system; E is the kinetic energy per unit of mass flow rate of the two-phase medium; 

iis the enthalpy; N is the power; N1 =Fev; N2 = Fes; Na =F(c v- Cs); R1 = 1+(S/p), R2 =(I+S)/p; S is the total 
additional mass coefficient; (i - x) is the mass concentration of liquid phase; z is the linear coordinate; Az is the 
distance traveled by the particle; ~ = z/Az is the dimensionless coordinate (0 _< -~ _< i); u = Cs/C v is the slip factor; 
Uvl = 2(1 + RaTg)/(l + ~A); Pv2 = (i + q-~/(-2RlTg); A = 1 + 4RlTg(l + R27g); p is the density; ~ = Ps/Pv; r is the time; rg 
is the generalized Stokes number; Fg = -rg(d~v/d~); ~ = In~ v. St[bscripts: s--liquid (solid) phase; 0--parameters at ~ = 
= 0; v--vapor (gas) phase; f--friction. 
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