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Relations are obtained for calculating the energy loss coefficient due to friction at the phase interface in a
one-dimensional two-phase flow. Calculated values of the loss coefficient as a function of a number of
dimensionless criteria are presented for the case of linear variation of the gas velocity as a function of
the coordinate.

In a two-phase as compared with a one-phase flow there are a considerable number of additional sources of
kinetic energy losses. These include: a) losses due to interphase heat transfer at a finite phase temperature
difference, b) losses due to phase transition at a finite value of the concentration difference, c) losses due to friction
at the phase interfaces, d) losses in condensation shocks, e} kinetic energy losses associated with the work done by
surface tension forces in connection with the curvature of the phase interface, f) energy losses associated with the
circulation of liquid inside a particle and with the repeated changes in the shape of a liquid droplet flattened by the flow
during rotation, etc. Below, we analyze the energy losses in a one-dimensional two-phase flow associated with friction
at the phase interface. Two coordinate systems are introduced: a system fixed in space (absolute) and the moving
system of the center of gravity of the particle.

The elementary work done by the gas phase in absolute motion
dA, = Nt = (Ny+ Ng)dr,. (1)

The useful work done by the gas in acceleration or deceleration is equal to the change in the kinetic energy of
the liquid (solid) particle:

Nydt, = Fdz = dE ¢ = (1 — x) ¢ 4dc,. (2)

The equations of motion of particles in gaseous media are usually obtained from (2). For a particle of arbitrary
shape

dv — {(v— V) (Vg V) (3)
de v ’

The work done by the gas in relative motion is equal to the sum of the amounts of work done in the process of
reversible and irreversible energy transfer:

Folc, —c5) d Ty, (4) Fi(cy—c,)dTs. (5)
The total work done by the gas in accelerating or decelerating the particles
dA=dE, +dA;=dA, — Fy(c,—c)d g, (6)
where
dA;= |Fy(cy—c5)dgl (7)

If in (1) the elementary work done by the gas is calculated not for the time of particle motion (drg), but for an
arbitrary time dr not associated with the time taken by the liquid droplets or gas particles to traverse a given
distance dz, then the relation for calculating the energy losses becomes more general than (7). It can be used for
calculating A¢ at any, including zero (cy = 0 or cg = 0) values of cy and cg.

We have
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2 [ 6—z |
Fi=(l—x) [ (CV)ZO } [CVRﬂ:S , (8)
R [ R~ dey }
Fz=(1—x)[Az | [& by =1 )
Transforming (7) with allowance for (8), we obtain
)2 ]
dAp = —9 L2 gy (10)
H RngV !
At (1 - x)/Rﬁg = const
= (1 —v)? e
=l—== = d(c,)?!. 11
A== | @] (11)

We define the available kinetic energy of the two-phase flow at z = 0 and any intermediate point (0 < Z < 1) as
2 2
Eo=x {80 gy Cho (12)
2 2
2 2
E=x—~—(c;) (=2 ~—(°;) + 4. (13)

We estimate the economy of the process of kinetic energy transfer between the gas and the liquid in terms of the loss
coefficient ¢

L= = e . — — (14)
E—Ey At 15[ — 1]+ (1 —x) [ve, v — vt |

It is important to determine Af/(l — x) and { for certain cases of self-similar motion of particles in a gas flow.

a) If the vapor and liquid phases move independently of each other without interchanging momentum
(nonequilibrium limit),

v = _vo/a,. (15)
Substituting (15) into (11) and (14), we obtain
A1l —x) =0 (16)
and
r=0. (17)
b} If vy = vy = const (motion of a two-phase medium with zero degree of nonequilibrium), then
- NV B :
A I 0 — ) ey— ey + )i (18)
I —x i Rng'Vw
and

(=00 —v)

(I =2 (1 vy + ilengvz ‘Vx 4+ (1 —x) V%fi” ’ (19)

In case b) irrespective of the magnitude and sign of d¢,/dz relaxation processes associated with interphase momentum
transfer cannot take place in the two-phase flow. This is the only particular case of motion when the slip factor v and
the loss coefficient ¢ do not depend on the coordinate z.

If vy = vyi, Eqs. (18) and (19) give the limiting values of Kf/(l — x) and ¢ as z — . It is clear from (19) that the
Stokes number 1, and dcy/dz have, qualitatively and quantitatively, the same effect on the limiting coefficient {. The

maximum value of ¢ in the case of convergent-channel flow lies in the range ?g = 1-10.

If the dimensionless vapor velocity depends linearly on the z coordinate
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o=@, —Nz+1, (20)

we find that, in the case of a convergent-channel and zero-gradient vapor flow, ¢y and v are related by the following
expression:

(5% ) ['Vo—"’ﬂ]( B . (21)

V — Vyg

(E:v)2 = [Vo —Yu ]

V—Vy

Substituting (21) into (11) and carrying out the necessary transformations, we obtain

- P
A/l —x)= | (c,)°df, (22)
0
where
o 1 —wvy)? Ny ¥
f=2[W0 _V + ( ) p Yo vl
Ry g VA V- Vy
{1 ,—,&2)2 In Vo — sz—, i
V A V— Vy2 |

If Gy — 1= 1073, then Ag =~ (1 - x)f (Gy)%

The limiting value of £ as z — 0 can be calculated from the following equation obtained from (11), (14}, and (21):

(=0 (1 —w)

- = e — (23)
(1 — ) (1 —%)* + v [ #Ry T + (1 — %) (1 — vy + Re Ty)]

Lo=lim{=
z~0

The other limiting value: {. =lim{ is determined from Eq. (19) above, if ¢, is a monotonically varying function
i

2D

of the z-coordinate,

If.yy = 1, then, other things being equal, as z varies from zero to infinify the coefficient { varies monotonically
from &; to {.. In this case, ¢ either decreases (v < vy;; &y > &w) or increases (vy > vyy; &) < {x) Or remains
unchanged (vg = vy;; & = {w). If ¥y >1, then ¢ also varies from & to e, but passes through a maximum. The
presence of a maximum can easily be explained if one recalls that at the beginning of the particle's path [(Evu)2 - v%] <
< 0. At some value of z the terms x[(T,)? — 1] and (1 — x) [(Gy¥)* = ¥f] in Eq. (14) become equal in magnitude, but
remain opposite in sign. In this case, the coefficient ¢ has a maximum value equal to 1. The value of ¢y corresponding
to £ = Lmax = 1 can be calculated by solving Egs. (21) and

(EV)Z: “_:‘J . i (24)
Equation (24) was obtained from the relation x [(EV)2 —-1]+(1=-x) [(c’:vv)2 — 18] = 0. By way of illustration, Fig. 1
presents the curves of ¢ as a function of (&y — 1) and x for vy = 0.6 and ¥y = 2. The calculations were based on Eq. (14).
At yy; = 0.6 and ?g = 0.1 vy < vy,. Consequently, as z increases, the coefficient ¢ decreases (Fig. 1,D).
The dependence of £ on (¢, — 1} is presented in Fig. 2 for three values of the Stokes number Tg It is clear from
the graphs that an increase in ¢y — 1 leads to a decrease in {. For the conditions of Fig. 2 the greatest value of ¢

corresponds to a zero-gradient flow.

For a zero-gradient vapor flow (¢y = 1), as follows from (21),

V-

Z=Ri1g [\’0 —v - 1n _&L—_ll—} . (25)

Jointly transforming (11), (14) and (25), we obtain
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Al — 1) = |2(v— v} — (v* —§); (26)
and

A—w+d—wl (27)
v v 1 (=) + (L— v)|

o
L=

Equation (27) gives the limiting value to which ¢ in Fig. 2 tends when (¢y, — 1) — 0 and 75 = const. The forms of
dependence of £ on (¢y — 1) are far from being exhausted by Fig. 2. In particular, if we set Tg = const in (19) and {23),
we obtain two other forms of the dependence of ¢ on (¢, — 1) which, as distinct from the relations of Fig. 2, are
extremal in character.
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Fig. 1. Coefficient { as a function of (EV — 1) and
x for vy = 0.6 (D; vy =2 (ID; 7, = 0.1; vy, = 0.9161;
Ry=1; Ry=0: 1) x=0.9; 2) 0.8; 3} 0.7; 4) 0.6;

5) 0.5.

Certain forms of the dependence of { on vy are presented in Fig. 3. Curve 6 is typical of small ¢y, — 1 and Fg.
Forcy, - 1= 1074 7. =107% x = 0.56—0.9 (Fig. 3) the coefficient ¢ varies from 0 to 0.57. In this case the range of
variation of £(yg) is not maximal.
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Fig. 2. Coefficient ¢ as a function of (¢y — 1)
and Tg for z=1; x=0.9; 4 =0.6; R, = 1
Ry = 0: a) 7 10% b) 10; ¢) 1.

The greatest influence of ¥y on the coefficient ¢ is observed in the following cases: 1) in the region 0 = yy = 1 at
z = 0; 2) in the region vy >1 at values of ¢y corresponding to & = {yax = 1. At a considerable distance from the initial
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interval of motion of the particle vy almost ceases to affect the coefficient ¢ (Fig. 3, curves 1—5). In this case the
calculation is based on equation (19).

¢ T
{
Q4
\ 6 —
/2345
az N g R I B A A
N e IR
P !/ /
N\ d [
\v/ L
0 a4 26 12 16 20 Yo

Fig. 3. Coefficient ¢ as a function of v, for Rl_ =1; Ry =
=0: 1-5) v = Yy ?g =10; 1) x=0.9; 2) 0.8; 3) 0.7,
4) 0.6; 5) 0.5; 6) (cy — 1) = 107% Ty = 1074 x = 0.5-0.9,

A typical graph of the coefficient ¢ as a function of Tg is presented in Fig. 4. The maximum of ¢ occurs at ?g =
= 0,01-1,

G

I\
/o

4

0% w7 wF et s o w? )

o3

WO

-1

\

NI SRS

Fig. 4. Coefficient ¢ as a function of T

and x for vy = 0.6; (¢, — 1) =107% R, =

=1; Ry =0: 1) x=10.9; 2) 0.8; 3) 0.7; 4)
0.6; 5) 0.5,

At constant (¢y — 1) Fig. 4 gives the dependence of ¢ on the Stokes number. The extremal character of the
dependence of ¢ on "Fg when the other parameters are fixed is explained as follows.

We represent the work A as the product of the dimensionless friction power Ny and the dimensionless time T
during which N¢ "acts."™ In particular, for vy = vy, Ry =1 and Ry = 0, as follows from (18),

R i/ G0

(28)
N

and
- =D, (29)

Tg

If x and EV are fixed, then, as ?g varies from zero to infinity, -I:If increases monotonically from zero to infinity, _
whereas T decreases monotonically from infinity to zero. At small 'T'g the time 7 is considerable in magnitude, but Ng
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is extremely small. In the region of large ?g, the friction power is quite large, but the time during which it Tacts” is
negligibly small. Conseguently, at both large and small Fg Ag— 0. Since on th_e interval 0 = 'Fg <« the WSI‘k Agis
expressed as a product of an increasing function N¢ and a decreasing function 7, the dependence of Afon 7, has a
maximum, Qualitatively, the variation of the coefficient v in (14) resulting from the variation of ?g does not affect the
dependence of £ on ?gﬂ Consequently, C(?g), like A(?g), has a maximum at some value of ?g'

As the above analysis has shown, the effect of all the dimensionless similarity criteria on ¢ is confined to
certain ranges of variation. Qutside these ranges the coefficient { is almost independent of the criteria in question.
The result obtained is nothing other than the widely known effect of "degeneracy of similarity criteria™ [1]. The above
relations make it possible to determine the limits of the ranges of variation for a given degree of influence of the
criteria on the quantity &.

It is worthwhile estimating the effect of particles present in the flow on the vapor velocity for a one-dimensional
adiabatic two-phase flow. If the volume occupied by the liquid phase is much less than the vapor volume, and we
disregard the effect of interphase heat and mass transfer, we can express the relative vapor velocity as follows:

A TN =
Cp == ]/ O (o — i +1—4, (30)

where
A=24/c)s = (1 — %) le, v)* — ~il + 4,

Equation (30) is the formula known from the gasdynamics of one-phase media supplemented by a term that takes
into account the forces of mechanical interaction between the vapor and the liquid. Since at the beginning of the
calculation Tg and, hence, A are unknown, Cy is calculated from {(30) by successive approximations.

The analysis of the energy losses associated with mechanical interaction between the vapor and the liquid shows
that the loss coefficient £ is a complex function of a series of dimensionless criteria: vy, T, X, ete. In a number of
cases ¢ reaches a considerable value and then the class of losses in question should be taken into account in two-phase
channel calculations. The formulas obtained above make it possible to find the qualitative and quantitative relations
between ¢ and the principal similarity criteria of the interphase energy transfer process.

NOTATION

A is the work; A, is the work done by the gas in absolute motion; Ay is the absolute value of the kinetic energy
losses in gas-liquid system generated by friction at the phase interface; A = 2A/(cv)§ is the dimensionless work; c is
the velocity; ¢ = c/(c'v)o is the dimensionless velocity; F = Fy + Iy is the force of interaction between particle and gas;
Fy and F, are components of the force F associated with the dissipation of kinetic energy (F,) and reversible interphase
energy transfer in the gas-liquid system; E is the kinetic energy per unit of mass flow rate of the two-phase medium;

i is the enthalpy; N is the power; Nj = Fey; Ny = Feg; N3 = Fle, = ¢g); Ry =1+(S/), Ry =(1+8)/p; S is the total
additional mass coefficient; (1 — x) is the mass concentration of liquid phase; z is the linear coordinate; Az is the
distance traveled by the particle; Z = z/Az is the dimensionless coordinate (0 = Z = 1); v = cs/cV is the slip factor;

vy; = 2(1 + Rﬁg)/(l + VA); vy, = (1 + \/Z-Q/(-2R1?g); A =1+ 4Ry7g(1 + Ry7g); p is the density; P = pg/by; T is the time; g
is the generalized Stokes number; Tg = Tg(dEV/dE); @ = In¢y. Subscripts: s—liquid (solid) phase; O—parameters at z =
= 0; v—vapor (gas) phase; f—friction.
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